National Journal on Electronic Sciences and Systems, Vol. 2, No.1, April 2011

PERFORMANCE IMPROVEMENT IN INVERTER DESIGN BY USING PARALLEL
DISTRIBUTED HYSTERISIS BAND PULSE WIDTH MODULATED CURRENT

CONTROLLER IMPLEMENTED FOR A VECTOR CONTROLLED INDUCTION MOTOR

Sreedhar Madichetty1, Prasanta Kumar Prusty2

'School of Electrical Engineering
KIIT University, Bhubaneswar, Orissa, INDIA-751024.
sreedhar.803@gmai|.com1,
prasanta.er@gmail.com2

ABSTRACT

The aim of the paper is to design a parallel distributed hysterisis band PWM current controller for a three level
voltage source inverter (VSI) through an artificial neural network (ANN) approach. The ANN approach has been
selected for this, since it has the potential to provide an improved method of deriving non-linear models which is
complementary to conventional techniques. To illustrate the validity of this approach, an indirect vector controlled
induction motor (IVCIM) drive has been considered as its application.For designing this, a feed forward neural
network using the error back propagation training algorithm is selected. This network is trained so that it learns
the nonlinear behavior of the conventional HBPWM controller. Thus the neural network acquires the features of
an HBPWM controller and behaves as an PDHBPWM. The simulation model of an IVCIM drive employing
PDHBPWM current controller is developed in SIMULINK/MATLAB environment. The performance of the proposed
method is compared with conventional HBPWM current control scheme. From the observations made it is concluded
that PDBPWM current controller is more efficient in terms of fault tolerance, switching loss and total harmonic
distortion thus improving the performance of the drive.

Terms: VSI (Voltage Source Inverter), Vector Control,Hystersis Band Control,Parallel Distribution, Artificial Neural

34

Network.

I. DESIGN OF PARALLEL DISTRIBUTED HBPWM
CURRENT CONTROLLER

The controller of the inverter must have some
nonlinear functions to convert the analogue inputs into
binary outputs. For this reason, the on-off pattern
controller of the inverter conventionally includes non
linear functions such as hysterisis comparators. Among
the various current control methods,The hysteresis
control scheme provides excellent dynamic
performance because it acts quickly.

The application of ANNs is recently growing in
the areas of power electronics and drives. Attificial
neural network concept is a synthetic approach [8] to
actualize the non-linear data mapping of the hysteresis
control scheme. A feed forward ANN basically
implements nonlinear input-output mapping. Among
several learning rules of ANN, the error back
propagation algorithm [2] is well known and useful
because it can be applied to multi layer networks. It
learns the non linear data mapping from the given input
and output data as teaching signals. The teaching

signal should be determined carefully so as to include
sufficient information to learn the essential
characteristics of the desired data mapping.

Remarkable features of neural networks are both
fast processing speed and fault tolerance to some
overlook connections in the networksystem. Because of
the parallel processing mechanism of neural networks,
it is expected that the neural networks can execute the
non-linear data mapping in short time and of the
distributed network structure, the performance of the
neural network may not be influenced by some miss
connections in the network itself. A control system with
multi input neural network may not be affected by
partial fault in the system, because some other correct
input data may compensate the influence of wrong
input data.

Il. FEEDFORWARD NEURAL NETWORK

The most commonly used feed forward; multilayer
network is the back propagation-type network. The
name ‘back propagation” comes from its training
method. The structure of feed forward back

Sreedhar Madichetty et al : Performance Improvement in Inverter Design... 35

propagation-type neural network is shown below in the
Fig 1.

Error Back Propagation Training

Error Back propagation or Back Propagation is
the most popular training method for a multi layer feed
forward network. Basically it is a generalization of the
delta learning rule developed for Adaline training. Input

Input Layer

Hdden Ly

and output patterns are submitted sequentially during
the back propagation training. If a pattern is submitted
and its classification or association is determined to be
erroneous the synaptic weights are adjusted so that the
current least mean square classification error is
reduced. The input-output mapping comparison of
target and actual values, and adjustment, if needed,
continue until all mapping examples from the training

output kayer

L

N
=aling o
Momalization

Actusl
Mias fom ingut Rias frnm Fadden Clulput
layer 1o hidden layer f T latyar 1o output layar | matem
Cmar _
BaukPropagalion | Enu
Training(weight .
adpistment] T F Desined
alygonilm Dy O 0y D4 O, outpud
. patlem

Fig. 1. Structure of Feed forward Neural Network showing Back Propagation training

36 National Journal on Electronic Sciences and Systems, Vol. 2, No.1, April 2011

set are learned within an acceptable overall error.
Usually mapping error is cumulative and computed over
the full training set. During the association or
classification phase, the trained neural network itself
operates in a feed forward manner. The weight
adjustments enforced by the learning rules propagate
exactly backward from the output layer through the
hidden layers towards the input layer and hence the
name back propagation. Fig 2 shows the general
flowchart of the error back propagation training. In the
beginning the network topology with the number of
layers, number of neurons in the hidden layer(s), and
activation function is selected. The input/output training
data patterns can be gathered from the experiment or
from the simulated system if the system model is
available. ANN topology and initial weights play a very
important role in training the network. The number of
hidden layers and number of hidden layer neurons are
selected by experience so that the network is trained
satisfactorily within an acceptable overall error. Once a
network is trained the synaptic weights remain constant
and further training of the network does not alter the
weights.

Get input-output data patterns
from experimental or simulation results

1
Design ANN topology with number of layers, nodes,
and activation function for respective layers

Begin 9f.a Initialize with random
new training
Select an input-output
Compute output and

Begin ofa
v Adjust weights of new training
Network Adjust weights of
is ready
for use

More patterns in the training set?

Fig. 2. Flowchart for Error Back Propagation
training of a Neural Network

lll. CREATION AND TRAINING OF THE
PDHBPWM CONTROLLER IN SIMULINK

The neural network chosen to emulate the
HBPWM controller is a feed forward multilayer network.
The network topology depends on the hysteresis band
width selected. The simulation results presented in this
paper are obtained by considering a band width of

0.02. The network has a 3-15-3 structure i.e. 3 input
neurons, 15 hidden layer neurons and 3 output
neurons. If a hysteresis band width of 0.5 is selected,
the network will have a 3-3-3 structure. The hidden
layer neurons are selected by trial and error so that
the network is satisfactorily trained for the considered
training data. Training samples [9] used to train the
network should be sufficient so that the network learns
the behavior of the hysterisis PWM controller. We have
considered 460 training samples for this problem. The
training samples are obtained by running the [VCIM
drive using conventional HBPWM current controller.
The error back propagation algorithm is used to update
the weights so as to decrease the current errors.

The PDHBPWM inverter control method is shown
in the Fig 3. The inputs to the PDHBPWM controller
are three phase current errors and the outputs are the
switching patterns to the PWM inverter as in the case
of conventional HBPWM controller. k in the figure
represents the normalization factor and is used for the
purpose of scaling the current error input to the
PDHBPWM controller.

sp b -
AR

Fig. 3. PDHBPWM Inverter Control method

The training rule [7] is the same as the principle
of operation of HBPWM current controller.

lim ref —im | <€ keeps the output pulse at the
same state

im, ref — Im > € let output pulse = 1 (high)

Sreedhar Madichetty et al : Performance Improvement in Inverter Design... 37

im, ref — Im < — € let output pulse = 0 (low)

where m=a, b, ¢ phases and ¢ is the hysterisis
band

The SIMULINK neural network toolbox consists
of subsystems such as control systems, net input
functions, transfer functions, weight functions. Each of
these subsystems consists of functional blocks which
are useful in developing SIMULINK models for different
types of neural networks. MATLAB also supports
Graphical User Interface (GUI) [3]. It is designed to be
simple and user friendly. This window has its own work
area, separate from the more familiar command line
workspace. Thus, when using the GUI, we can “export’
the GUI results to the (command line) workspace and
also “import” results from the command line workspace
to the GUI. This interface allows us to:

o Create different types of neural networks
e Enter data into the GUI
e |nitialize, train, and simulate networks

e Export the training results from the GUI to
the command line workspace

e |mport data from the command line
workspace to the GUI

Algorithm for Design of PDHBPWM Current
Controller

STEP 1: Generation of training data for the neural
network

STEP 2: Using GUI, design a feedforward neural
network and initialize its weights with random values.

STEP 3: Select the error back propagation training
algorithm for the training of the network

STEP 4: Train the feedforward network using the
generated training data

STEP 5: |If the MSE (Mean Squared Etrror) is below
the acceptable value, Then training is complete and the
network is ready for use Else, The network is not
trained, go to Step 2.

Generation of Training Data to Train the Neural
Network

Training in this case is required to learn
something about the plant behavior i.e. the neural
network must learn the non-linear behavior of the
hysterisis current control.

The training data is generated by simulating the
IVCIM drive using conventional HBPWM current
controller. Connect To workspace blocks available in
Sinks in SIMULINK library at the input and output of
HBPWM current controller to store the generated
training data in the workspace.

Procedure to Create and Train the PDHBPWM
controller

Creation and training of PDHBPWM current
controller using neural net toolbox can be implemented
in the following steps:

STEP 1: The first step is to open the Network/Data
Manager window. To open the Network/Data Manager
window type the function nntool in the command
window in the main Matlab window and press enter.
The Network/Data Manager window is shown below
in the Fig 4.

=) Network/Data Manager QIE\
Inputs: Networks Outputs
Targets: Errors

Input Delay States Layer Delay States

Networks and Data

[Help] \New Data] [New MNetwaork

[Impon][Export }

Netwarks only

Fig. 4. Network/Data Manager window

STEP 2: Click on Help to get started on a new
problem and to see descriptions of the buttons and
lists.

Creation of input training data file control I/P:

Define the network input file, say control I/P.
Retrieve the training data from the workspace and
consider 460 samples of input data. As the inputs to
the HBPWM controller are three phase current errors
and 460 samples of input have been considered, the
input training matrix will be of the order 3 x 460. Thus,
the network has a three-element input and 460 sets of

38 National Journal on Electronic Sciences and Systems, Vol. 2, No.1, April 2011

such three-element vectors are presented to it in
training. To define this data, click on New Data, and a
new window, Create New Data appears. Set the Name
to control_I/P, Value to input training data, and make
sure that Data Type is set to Inputs. The Create New
Data window will then look like in the Fig 5.

- BIX]

=) Create New Data

Name Data Type
datalcontol_IiP ® Inputs
value (O Targets

[1.023e+005-94260 7.4761e+0(() Input Delay States
-51174 12712 -2.0806e+006 -

|
L5126 81549 1.333e+006 -61 O Layer Delay States

() outputs

z . () Errors

[Help J[Cancel J[Create J

Fig. 5. Create New Data window

Now click Create to actually create the input file
control_I/P. The Network/Data Manager window comes
up and control_ I/P shows as an input.

Creation of target/output training data file
control_targ:

Define the network output file, say control_targ.
Retrieve the training data from the workspace and
consider 460 samples of output data. The output matrix
will be of the order 3 x 460. Click on New Data again,
and this time enter the variable name control_targ,
specify the output training data under Value and click
on Target under data type. Again click on Create and
the resulting Network/Data Manager window that will
now appear will have control_targ as a target as well
as the previous control_ I/P as an input.

STEP 3: Now create a new network, called
control_neural. To do this, click on New Network, and
a Create New Network window appears. Enter
control_neural under Network Name. One can select
the type of neural network, training and learning
functions, performance function, number of layers for
the network, number of neurons for each layer and
transfer function in this window. Set the Network Type
to Feed Forward Back Propagation, as that is the kind
of network to be created. The input ranges can be set
by entering numbers in that field, but it is easier to get
them from the particular input data that is to be used.
To do this, click on the down arrow at the right side

of Input Range and click on control_I/P. Select the
training and leaming functions [3] as TRAINLM and
LEARNGDM.TRAINLM is a network training function
that updates weight and bias values according to
Levenberg-Marquardt ~ optimization. LEARNGDM
function is gradient descent with momentum weight and
bias learning function. Select Number of 1st and 2nd
layer neurons as 15 and 3 respectively. Select TANSIG
transfer function for both the layers. Now Create New
Network window should look like in the Fig 6.

=) Create New Network

Network Name: control_neural

rNetwork Type: Feed-forward backprop v
Input ranges: 560 1333000] Getfrominp... s
Training function: TRAINLM v
Adaption learning function; LEARNGDM v
Perfarmance function: MSE v
Number of layers: 2

Properties for. Layer2

Number of neurons: 3
Transfer Function: TANSIG v

[wview |[Defauns | [cancel |[create

Fig. 6. Create New Network window

A view of the network can be obtained by clicking
on View button. This is shown in the Fig 7.

=1

View Initialize Simulate Train Adapt Weights

Wt 13
=

-} Network: control_neural

0
3 15 3
[Manager H Close l

Fig. 7. View of the created network

Now click Create to generate the network. You
will get back the Network/Data Manager window. Note
that control_neural is now listed as a network.

Step 4: To train the network, click on control_neural
to highlight it. Then click on Train. This leads to a new

Sreedhar Madichetty et al :

window labeled Network: control_neural. Specify the
inputs and output by clicking on the left tab Training
Info and selecting control_I/P from the pop-down list of
inputs and control_targ from the pull-down list of
targets. The Network: control_ neural window should
look like the Fig 8.

+} Network: control_neural g
View Iniislize Simulate Train Adapt Weights
TrainingInfo Training Parameters Optional Info
Inputs conlrol_LP v Qutputs control_neural_outpt
Targels control_targ v Emors control_neural_grmor:

|Train Network|
il |

'Mansge- | Close |

Fig. 8. Network: control_neural window

The Training Results are Outputs and Errors.
They have the name control_neural appended to them.
This makes them easy to identify later when they are
exported to the command line. Now click on the
Training Parameters tab. It shows parameters such as
the epochs and error goal. These parameters can be
changed at this point if required. Now click Train
Network to train the backpropagation network. Then the
window shown in the Fig 9 opens. For ideal training
the performance must be equal to goal (usually equal

Cis s

Performance Improvement in Inverter Design... 39

to zero). In the present case the performance is
reduced to 3.21722e-014 in 12,500 epochs which is
nearly zero. The network will work satisfactorily as a
hysterisis comparator only if the performance is
reduced to such a small value. Output errors decrease
in proportion to the performance index.

M

BX

-} Training with TRAINLM
Fle Edt View Insert Took Window Hep

it

: Performance is 3.21772e-014, Goal is 0
10 T T T T T

Training-Blue

14

10' L I 1 L I
D5 06 07 08 089 1
Cne Epoch

. .) .
il 01 02 03 04
Stop Tranng |

Fig. 9. Training window

IV. SIMULINK MODEL OF PDHBPWM CURRENT
CONTROLLER

The SIMULINK block diagram of NHBPWM
current controller is shown below in the Fig 10.

In1 Out1 Hefround »

v
il
A 4

|t 01| >

i

&,
laberet

Y

-b{b uoloanuouble)}—b
»

= In1 Out1 round »
i 1
Fulses

-D{boolean double)]—b

.
NOT (double)

Fig. 10. Simulink block diagram of NHBPWM

40 National Journal on Electronic Sciences and Systems, Vol. 2, No.1, April 2011

The input layer consists of three phase current
errors as input. The hidden layer consists of 15
neurons where each neuron is represented as a
subsystem. Similarly each of the output neuron is
represented by a subsystem. The subsystem model
representing each neuron is shown in the Fig 11.

[eh—p
b —!7[—@

In1 dotprod i Outt

netsum tansig

Fig. 11. Subsystem model of neuron

The neuron model in the Fig 11 is constructed
according to the basic neuron model . Once a neural
network is trained the weights of the network remains
constant. Hence, the weights of the neural network
after training are represented by the constant blocks in
the Fig 11. The transfer function of each neuron unit
is tan sigmoidal function.

V. SIMULINK MODEL OF IVCIM DRIVE USING
PDHBPWM CONTROL

To perform a comparative evaluation of
conventional and neural hysterisis current controller, the
simulation model of an IVCIM drive using PDHBPWM
current controller is also developed and simulated. The
model is shown in the Fig 12. The block diagram is
same as that of drive using conventional HBPWM
current controller except that the conventional controller
is replaced by PDHBPWM controller.

Bats vePage B
Rator cumant i_a03ampdn
._tyvng

:E CITEE [
Vab
ndoter Metsr u s

L 3L %]

iicCth

e

[ramete
Tee 200088

£

Fig. 12. SIMULINK Model of IVCIM drive using PDHBPWM Control

Sreedhar Madichetty et al :

The reference inputs to the system are the

reference speed (wy) in radians per second, the flux

linkages (phir*) and the load torque (Load torque). The
required outputs are the developed electromagnetic

torque (T,) and the rotor speed (o).

VI

SIMULATION RESULTS AND DISCUSSIONS
In order to illustrate the proposed PDHBPWM

controller scheme an IM with the ratings specified.
Simulation results of IVCIM drive using PDHBPWM
controller are presented in this section.

Speed(rad'sec)

140 4

120 ¢

100 1

@
=1

60 7

40 4

..

T T H H i T
0is i 135 ¥ 25 } 35
Time(sec)

Fig. 13. Speed response of IVCIM using

PDHBPWM controller without any disturbance

350

w
=2
=]

o
&
=]

Torque{N-m)

100

=1
=3

@
=

Time(sec)

Fig. 14. Torque response of IVCIM using
PDHBPWM controller without any disturbance

From the speed and left torque responses of the

IVCIM shown in Figs 13, 14, 15 and 16 it is concluded
that the performance of both the HBPWM and
PDHBPWM controllers is the same.

Performance Improvement in Inverter Design... 41

140 4

Speediradsec)

Time{sec)

Fig. 15. Speed response of IVCIM using
PDHBPWM controller with step disturbance

350
300 1
250
200
150

100

Torque(N-m)

-50

-100

-160
Time{sec)

Fig. 16. Torque response of IVCIM using
PDHBPWM controller with step disturbance

pe)

Is_abcistaton curment in o

Timeisec)

[—phase & ——phase B —phase C

Fig. 17. (a) Stator current of IVCIM using
PDHBPWM controller with k =1

From the Figs 17(a) and 17(b) it is observed that
the stator currents of the motor using PDHBPWM and
HBPWM controllers respectively, with normalization
factor k=1, are smooth and identical.

National Journal on Electronic Sciences and Systems, Vol. 2, No.1, April 2011

42
600
i
§ 400 14
£ o liY-
H
£ o
‘3; -200 I-,
00 1YY
e
-600 -
Time(sec) [—phase A — phase B —— phase C
Fig. 17. (b) Stator current of IVCIM using
HBPWM controller with k=1
g
i
]
i
g
3
nI
Time(sech l—pr.-aseﬁ -—phase B — phase -:]

B cabve £nbontonr ooreet o g

Fig. 18. (a) Stator current of IVCIM using
PDHBPWM controller with k= 0.003

Trefsec)

Fig. 18. (b) Zoomed portion of Stator current of
I[VCIM using PDHBPWM controller with k = 0.003

{stator current in amps)

Is_abwt

Time(sec) |——phase A — phase B —— phase C

Fig. 18. (c) Stator current of IVCIM using
HBPWM controller with k= 0.003

T I T I I I
o ””‘;WMNW“WM"’\M’W"” g
\ \ WMI,\ (il Wiy :

Ls_abclstator current n amps)

Time{sec)

Fig. 18. (d) Zoomed portion of stator current of
IVCIM using HBPWM controller with k =0.003

From the Figs 18(a) and 18(c) it is observed that
if the input to the current controller is normalized by a
normalization factor of 0.003, the input current to the
motor using PDHBPWM controller is smooth but the
input current to the motor using HBPWM controller is
distorted. The Figs 18(b) and 18(d) show the zoomed
portions of the stator currents in the Figs 18(a) and
18(c) respectively. Also the torque pulsations for the
motor developed torque are smaller for the drive
employing PDHBPWM controller.

_abofstator current in anps)
b

Time(sec)

|*phase A ——phase B ——phase C

Fig. 19. (a) Stator current of IVCIM using
PDHBPWM when phase-A current error is zero

250 .
200 oot
150 {5-
100 {--
o]

ant in aps)

| 4
w -100
-150

—phase A ——phase B ——phase C

Fig. 19. (b) Stator current of IVCIM using
HBPWM when phase-A current error is zero

Sreedhar Madichetty et al : Performance Improvement in Inverter Design...

The Figs 19(a) and 19(b) show the fault tolerance
property of neural networks. When any one of the
inputs to the HBPWM controller becomes zero, the
output current of the inverter which is the input current
to the stator of the IVCIM becomes zero. Hence the
IVCIM drive employing the HBPWM controller ceases
to work in such a case unlke the PDHBPWM
controller. In the PDHBPWM controller the other two
inputs compensate the lack of the non existing input
and hence the drive still works. The stator currents
waveforms shown in Figs 19(a) and 19(b) are obtained
by simulating both the drives when the A-phase current
error input to the controllers is zero.

Hysterisis %THD of stator current.
Band (phase - A) of IVCIM using
Width HBPWM controller | PDHBPWM controller
0.02 3.679 3.637
0.5 4.210 3.0375

Switching loss

The switching loss of the inverter using
PDHBPWM controller is decreased compared to that
of the inverter using HBPWM controller in the [VCIM
drive. This is proved by comparing in the both cases
for different values of k. For normalization factor
k=1, o for the drive using HBPWM controller is 0.26
o for the drive using PDHBPWM controller is 0.20 For
normalization factor k=0.1, o for the drive using
HBPWM controller is 0.64 o for the drive using
PDHBPWM controller is 0.32 For normalization factor
k=0.003, o for the drive using HBPWM controller is
0.96 o for the drive using PDHBPWM controller is 0.40
We can observe that in all the above cases, o is
smaller for the drive employing PDHBPWM controller.
Hence the inverter switching losses are smaller when
PDHBPWM controller is used instead of conventional
HBPWM controller.

Total Harmonic Distortion

The % total harmonic distortion (%THD) of the
input current to the stator of the IVCIM using HBPWM
controller and PDHBPWM controller respectively for
hysterisis band widths of 0.02

43

Table 2: Comparison of %THD

Hysterisis %THD of stator current (phase - A)
Band of IVCIM using
Width "LBPWM controller | PDHBPWM controller
0.02 3.679 3.637
05 4210 3.0875

and 0.5 are shown in the Table 2:

It can be inferred from the data given in the Table
1 that the use of a PDHBPWM controller reduces the
THD of the stator current of the IVCIM. For a hysterisis
band width of 0.02 there is no appreciable decrease
in the THD but for a hysterisis band width of 0.5 the
THD is decreased by 1.1725%.

VIl. SUMMARY AND OBSERVATIONS

In this Paper the design of a PDHBPWM current
controller for an inverter control is presented. And its
modeling in SIMULINK is discussed. To illustrate the
operation of PDHBPWM controller an IVCIM drive using
PDHBPWM controller is modeled. The results are
discussed and compared with the drive using
conventional HBPWM controller. It is observed that the
PDHBPWM controller reduces the switching losses of
the inverter, is highly fault tolerant and reduces the
THD of the input current to the VCIM. The speed,
torque responses of the motor of both the drives are
identical thus indicating that the performance of both
the controllers is same. Due to the parallel processing
mechanism, it is expected that the neural networks map
the non-linear data in a very short time. But, because
the operation of the neural network is simulated in a
series sequential computer, the processing speed is not
so fast. Neural network chips with parallel processing
mechanism ensure fast processing speed.

As long as the entire information is available, the
performance of both the HBPWM and PDHBPWM
controllers are the same. But if there is any information
loss like some misconnections in the network or one
of the inputs to the network is zero, then the
performance of the PDHBPWM is good compared to
the HBPWM controller. This is due to the fault tolerance
property of the neural network.

When the normalization factor k of current error
inputs to the HBPWM and PDHBPWM current
controllers is 1, the stator current input and developed

44 National Journal on Electronic Sciences and Systems, Vol. 2, No.1, April 2011

torque of the IM of both the drives are similar. As k
is decreased upto an extent of 0.003, the stator current
input and developed torque of the IVCIM using
PDBPWM controller are smooth compared to that of
the IVCIM using conventional HBPWM.

Switching losses of the inverter with PDBPWM
current controller is less compared to those of the
inverter with conventional HBPWM current controller.

The stator current of IVCIM using PDBPWM
controller has a lesser THD. The THD is a measure
of the amount of harmonics present in a signal. Thus
a lower value of THD implies lower harmonic content
and hence good control signal. This feature minimizes
the unnecessary heating and torque pulsations in the
IM.

REFERENCES

[1] Masao Yano, Shigeru Abe, Eiichi Ohno: “History of
Power Electronics for Motor Drives in Japan®, /EEE.

[2] Jacek M. Zurada: “Introduction to Artificial Neural
Systems™-West Publishing Company, 2002.

[3] MATLAB 6.5: Help Documentation-Release Notes 13.
[4] 1.Boldea & S.A.Nasar:"Vector control of AC Drives”.

[5] Bimal K. Bose: “Modern Power Electronics and Ac
Drives™Pearson Education,

[6] Dr. P. S. Bimbhra: “Power Electronics™-Khanna
Publications, 2nd Edition, 1998.

[7] Bor-Ren Lin and Richard G.Hoft: “Power Electronics
Inverter Control with Neural Network”, in /EEE-APEC,
(San Diego), pp. 128-134, 1993.

[8] Fumio Harashima, Yuzo Demizu, Seiji Kondo, Hideki
Hashinmoto: “Application of Neural Networks to Power
Converter Control”, JEEE-IAS, Ann. Mtg. conf. Record,
pp.1086-1091, 1989.

[9] Marian P Kazmierkowski, Dariusz Sobczuk: “Improved
Neural Network Current Regulator for VS-PWM
Inverters” JEEE, pp. 1237-1241, 1994

Madichetty Sreedhar, presently doing
M.Tech at KIT University,
Bhubaneswar,along with the research
is continuing as teaching Assistant
under the guidance of Senior
Professor Sri A.Das Gupta, Dean
| School Of Electrical Engineering.

Prasanta Kumar Prusty, presently working as a
Assistant ~ Engineer in ORISSA POWER
TRANSMISSION CO.OP.LTD. Orissa, Doing M.Tech
and research in KIIT University, Bhubaneswar.

